

Motion & Intelligence in Railways

Modeling and calculation of axles ESIS TC24 Workshop 24-25 October 2016, MCL, Leoben

Aitor Landaberea

- 2. Development of numerical models
- 3. Design of the transition
- 4. Assessment of mounted components
- 5. Axle calculation method
- 6. Conclusions

- 2. Development of numerical models
- 3. Design of the transition
- 4. Assessment of mounted components
- 5. Axle calculation method
- 6. Conclusions

Review of current EN design standards

- History of EN 13103/4:
 - Kammerer (1964)
 - ERRI B136/RP11 (1979)
 - NF F 01-118 (1989)
 - UIC 515-3 (1994)
- Methodology:
 - Method to calculate forces acting on the axle
 - Method to calculate stresses in different sections of the axle
 - Beam calculations for axle design
 - Definition of allowable stresses

K, F obtained from tests of Kammerer (1/3 scale, d = 60 mm, r = 2, 5, 6, 10, 15, 25 mm)

- Notch factors of Kammerer/EN standards are \approx 20% lower than those obtained by measurements, literature or FEA
- Local stresses acting on the transitions of the axles are higher than those calculated according to EN 13103/4
- EXPERIENCE shows that the fatigue limits of the axles based on local stresses are higher than those established in the current standards.
- Product qualification according to current EN standards should be conducted on the basis of nominal stresses.

Need for numerical modeling of axles

- State of the art: Calculation of axles according to EN 13103/4
- Analysis based on local stresses should be adopted for better control of the acting stresses
 - Direct correspondence with local stresses in full fatigue tests
- Application:
 - Analysis of complex geometries (e.g. powered axles) non-standard transitions are needed due to design constraints
 - Optimization of axles

- 2. Development of numerical models
- 3. Design of the transition
- 4. Assessment of mounted components
- 5. Axle calculation method
- 6. Conclusions

© CAF S.A. MiiRA, 24/10/2016

2. Numerical models

Model generation

- FE models of full scale fatigue test samples
- Convergence analysis for element type and size performed
- Model validation: Comparison with tests measurements

Linear Hexahedral Elements

Quadratic Hexahedral Elements

Convergence analysis

1.26

1.24

1.22

1.2

0.35

2. Numerical models

35

R 75

Model validation

• F4, D/d = 1,12

- Good adjustment (linearised models better)
- Peak stress at the end of the transition
- Some diferences near the seat due to different averaging of nodal results

Model validation

F4, D/d = 1,08

Kt,ε1 max = 1,56

- Good adjustment up to the small radius *r* (linearised models better)
- Peak stress at the small radius
- Linearised model more conservative

2. Numerical models

Model validation - Kt Summary

- Good adjustment of models
- In general, linearised models give better adjustment than non-linear models
- K (Notch factor) acc. to EN 13103/4 values lower than FE
- EN 13103/4, F4, D/d=1,08, r=15 mm
 - $K_{t,\varepsilon_1} = 1,49$

2. Numerical models

Model - Recommendations

- 3D or 2D with Fourier series expansion finite element models can be applied.
- Element type: linear hexahedral elements are accepted assuming that mesh convergence is verified.
- Element size: convergence analyses should be performed to check the validity of the models.
 - If the peak stress is located at the big radius of the transition, the typical element size in this zone should be approximately 4 mm.
 - If the peak stress is located at the small radius of the transition, the typical element size in this zone should be approximately 1 mm.
- For post-processing, unaveraged results are recommended to check convergence and the effect of singularities

- 2. Development of numerical models
- 3. Design of the transition
- 4. Assessment of mounted components
- 5. Axle calculation method
- 6. Conclusions

3. Design of the transition

- Seat-body transitions generally designed as Basket archs (multiple radii)
- For a given set of geometrical parameters, a short transition increases the peak stress
- Design criteria: C > Cmin: Transition long enough to ensure that the peak stress is at the big radius near to the end of the transition, that is, lowest peak stress

© CAF S.A. MiiRA, 24/10/2016

ESIS TC24, MCL, Leoben, 2016

Included in prEN 13103-1:2014

© CAF S.A. MiiRA, 24/10/2016

3. Design of the transition

• Parametric analysis (DOE) based on FE performed (for simple transitions)

ESIS TC24, MCL, Leoben, 2016

- Outputs:
 - Peak stress along the transition
 - Position of the peak stress
 - Stress concentration factors
 - Cmin: minimum transition length

Source	Cmin [mm]		
Ore 136	$1,25 \cdot d \cdot \left(\frac{D}{d} - 1\right)$		
UIC515-3	35 if d ∈ (155,170) 40 if d ∈ (175,205)		
EN13103/4	e.g. 35		
EIBFW-I	$C \ge \left(0,0952 \cdot d + 20,6\right) \frac{\left(\frac{D}{d} - 0,2113\right)}{0,9351} \cdot \frac{\left(\frac{D_{N}}{D} + 5,192\right)}{6,468}$		
Euraxles	-3,8 + 0,035⋅d + 0,381⋅rmax + 0,0279⋅D		

Current EN 13103/4 not conservative

- 2. Development of numerical models
- 3. Design of the transition
- 4. Assessment of mounted components
- 5. Axle calculation method
- 6. Conclusions

- Finite element models of complete wheelsets can be very complex
- Is it possible to simplify the models for the analysis?
 - Linear/Non-linear
 - Removal of components

Simple transitions

Section	Part	Interference	Stiffness	Comments
9	Labyrinth	Low	Low	Part can be removed from the model
10	Wheel	High	High	Part cannot be removed Linear + tie model more conservative (better adjustment to experimental results)

S10

Adjacent seats

Section	Part	Interference	Stiffness	Comments
3	Wheel	High	High	Part cannot be removed Linear + tie model more conservative
4	Labyrinth	Low	Low	Part can be removed from the model

S4

Grooves

Section	Part	Interference	Stiffness	Comments
5,8	Labyrinth-Bearing	Low-Low	Low-Low	Linear + tie model more conservative Small difference with non-linear model and linear w/o part
6,7	Bearing-Gear	Low-High	Low-High	Linear + tie model too conservative High difference with non-linear model and linear w/o part Non-linear model more realistic

© CAF S.A. MiiRA, 24/10/2016

ESIS TC24, MCL, Leoben, 2016

• Parametric analysis performed for simple transitions and grooves

© CAF S.A. MiiRA, 24/10/2016

5

10

1.4

1.2

1

0.8

0.4

0.2

0

0

Kt (in strains) 9.0

4. Assessment of mounted components

Model - Recommendations

- High stiffness-high interference elements (wheels, brake discs, gears)
 - Simple transitions: Linearised + tie models
 - Adjacent seats: Linearised + tie models

Path 5 - Bending minus interference

Friction 0.001

Friction 0.3

Friction 0.6

15

Axial distance [mm]

20

25

ESIS TC24, MCL, Leoben, 2016

- Grooves: Non-linear contact interaction ($\mu = 0,6$)
- Low stiffness-low interference elements (bearings, labyrinths)
 - Remove from the models

Path 6 - Bending minus interference 1.8 1.6 1.4 1.2 strains) Friction 0.001 **Kt (ji** 8.0 **Kt** Friction 0.3 Friction 0.6 0.6 0.4 0.2 0 8 10 0 2 Axial distance [mm]

5

8

23

- 2. Development of numerical models
- 3. Design of the transition
- 4. Assessment of mounted components
- 5. Axle calculation method
- 6. Conclusions

Motivation

- Current EN13103/4 represent the SoA and lead to reliable components
- Main limitations have been identified
 - e.g. complex structures like powered axles with non-standard transitions due to design constraints
- Different modelling and analysis methods of axles have been evaluated in the EURAXLES project
- A practical approach has been defined:
 - Balance between complexity (modelling and calculation) and results
 - Combination of current calculation standards and a local stress approach

- Local stress approach
 - Fatigue limit in terms of local stress or strain is less variable than nominal values (influenced by the geometry of the transitions)
 - Common practice in full scale fatigue tests of axles: uniaxial strain gauges ε1
 - Pseudo-stress $\sigma = E \cdot \varepsilon 1$ and $K_{t,\varepsilon 1}$ should be used

Calculation method

- 1. Appy forces as per current EN 13103/4 standards
- 2. Calculation of bending moments and nominal stresses σ_n in the different sections of interest by applying beam theory:

(solid axle)

$$\sigma_n = \frac{32 \cdot MF}{\pi d^3}$$

- Transitions: calculate σ_n at the end of the transition on the free surface of the axle
- 3. Calculation of $K_{t,\varepsilon 1}$ in transitions
 - Recommendation: Transition length $C \ge Cmin$
 - Use finite element models of the axle following recommendations derived in the project
 - 3D half model using symmetry/2D model with Fourier series expansion
 - Simply supported at the center of both journals
 - Constant bending moment applied at both ends

4. Calculation of the dynamic local stresses in each section:

$$\sigma_d = K_{t,\varepsilon 1} \cdot \sigma_n = K_{t,\varepsilon 1} \frac{32 \cdot MR}{\pi d^3}$$

- 5. Check $\sigma_d < \sigma_f$ for each section. If not, redesign.
 - Need:
 - Fatigue limits

(solid axle)

• Safety factors

Fatigue limits

- F1: Fatigue limits on axle surface as defined in EN 13261
 - Full scale tests:
 - EURAXLES WP3
 - S. Cervello, Int. J. Fatigue 86 (2016), 2-12.

Material	Average fatigue limit	Std deviation	Fatigue limit 2.5%	F 1 - EN13261
	(MPa)	(MPa)	(MPa)	(MPa)
EA4T	307	18	271	240

- Average fatigue limit from tests $> 1,2 \cdot F1$
- EN standards: no probability of failure is associated to the fatigue limits

Safety factors

- Analysis of safety factors:
 - Probabilistic analysis
 - EURAXLES WP2
 - S. Beretta, D. Regazzi, Int. J. Fatigue 86 (2016), 13-23.

Material	Constant load - SFmin	Notes	SF - EN13261
EA4T	1.15-1.2	Pf = 7.10 ⁻⁵ Strength 2.5% w/o correction for notch sensitivity	1.33

- Similar values both approaches
- Additional studies needed

- 2. Development of numerical models
- 3. Design of the transition
- 4. Assessment of mounted components
- 5. Axle calculation method
- 6. Conclusions

6. Conclusions

- Analysis of the current EN 13103/4 standards has been presented
 - Local stresses acting on the transitions of the axles are higher than those calculated according to EN 13103/4
 - Fatigue limits in terms of local stresses are also higher than the values given in EN 13103/4
 - Current procedure leads to reliable results
 - Qualification of the axles according to current standards should be based on nominal stresses
- Recommendations for the numerical modelling of axles have been derived
 - Validation through comparison with experimental tests
- A practical approach for the calculation of axles has been defined
 - Based on local pseudo-stresses to be coherent with the current practice in full scale fatigue tests

6. Conclusions

- EN standards: no probability of failure is associated to the fatigue limits and related safety factors.
 - Comparison with new methods is difficult
- Additional studies should be conducted
 - Load estimation
 - Fatigue limits
 - Definition of safety factors

Acknowledgements

EURAXLES - Minimizing the risk of fatigue failure of railway axles EU Project FP7 - Grant Agreement nº 265706

