

ESIS TC 24 – Leoben 23-24 Oct 2016

The Solution for Volumetric Assessment of Aluminothermic Rail Welds

- Lu Zhao and J Rudlin
- TWI Ltd
- Cambridge, Cambridgeshire, CB21 6AL, UK
- lu.zhao@twi.co.uk, john.rudlin@twi.co.uk

Materials Joining and Engineering Technologies

- Background and the market need for a new inspection system
- Requirements of the new (post-project) system
- Design and functionality of Railect system
- Inspection results

Aluminothermic Welds in the Railway Industry

- The majority of field welding is carried out using aluminothermic welding. This casting method is :
 - widely used for in-track welding during re-rail and defect replacement
 - an effective, highly mobile and cost effective
- In the UK :
 - 65,000 new welds per year produced by
 Network Rail and up to 2% rejection rate
 - 1.5 million welds already on the main line railways
- In Europe:
 - 300,000 to 400,000 new welds made per year
 - 11 million welds estimated to be on track
 - 20% of all rail failures estimated to be caused by weld failures

TWI Current Techniques of Inspection

- Visual Inspection
 - Most of the time, only visual inspection is performed
 - Surface and geometric flaws only are assessed
 - Reliability? Performance? Assessment?
- Conventional Ultrasonics

 Manual ultrasonic procedure for inspection of rail welds: EN 14730-1:2006 Annex C
 Eull inspection takes approximately around
 - Full inspection takes approximately around 1hour
- Radiography
 - Disadvantage of the exposure time and exclusion zone (especially for main line track)
 - Full inspection takes approximately 30 minutes to 1hour

Need for new system of inspection

TWI

Requirements of the Railect System

- Fully portable and easy to deploy
- Robust and weather proof
- Rapid volumetric inspection
- Give clear indications of defective welds
- Compatible with multiple rail profiles

Fully portable

- Fully encased with carrying handles on both sides of outer case
- Total weight around 10kg
- Robust to be transported on railway trolley

Development of Prototypes

Deployment of Railect System

Robust and Weather Proof

Aluminium frame and casing

Covered top

 Computerised in ruggedised, lap required

Compatible Profiles -- Previous

- Concentrate on one rail profile
 - □ CEN60E1
- Selection of flaws
 - Porosity in the head
 - Lack of fusion in the foot

Compatible Profiles --- New

Designed for 3 additional profiles: 54E1, 54E2, and

54E

1

Range of Height: 158mm to 172mm Range of foot width: 125mm to 150mm Range of head width: 67mm to 72mm Range of head height: 49mm to 51mm

Welding Defects

The most common volumetric defects for AT welding are: Porosity

Lack of fusion

Shrinkage

These defects can cause welds to fail in months rather than years resulting in risk to safe operation and track closures for repairs

Inspection Technique

- Phased array techniques
 - To steer, focus and scan beams with a single transducer assembly, 32:128 multiplex
 - Focal laws were developed via modelling and trials
- Hardware consists of :
 - 8 phased array probes
 - Cables and connector box
 - Computerised instrument for data acquisition and display
 - Clamp on device, Railect system

Inspection Technique

- 8 multiplexed probes (inspect one side)
- On profiles with narrower foot, F1 probes can be

Top View

Inspection Coverage

Inspection Coverage

Head Probe

Railect System

The coverage of each probe

TWI Inspection of the Ankle of the Rail Foot

Transducer and focal laws parameters:

- 16 elements
- 5 MHz
- Sectorial scan 55°- 75°
- Step 0.5° degree

Inspection of Rail Head and Web

Transducer and focal laws parameters:

- •32 elements
- 5 MHz
- Sectorial scan -50° to 50°
- Step 0.5° degree

Transducer and focal laws parameters:

- 32 elements
- 5 MHz
- Sectorial scan 35°- 69.8°
- Step 0.3° degree

- Additional features of the new system
 - Laptop is not needed for inspection
 - More robust and weather proof
 - Compatible with 3 more profiles
- Current Work
 - Delivery of unit for Hong Kong MTR
 - Proposal(s) to be submitted for development
- Future Work
 - Perform more site trials
 - Establish Acceptance Criteria (automate sentencing)
 - Customised phased array instrument
 - Extension to vertical flaws flash butt welds

Trial

Questions??

