Effect of Residual Stresses on Safe Life Predictions of Railway Axles

H.J. Schindler Mat-Tec AG Unterer Graben 27 8401 Winterthur schindler@mat-tec.ch

Contents

- Effect of R.S. on fatigue load in general
- Measurement of residual stress profiles by the Cut-Compliance method
- Application to railway-axles
- Examples
- Effect of R.S. on calculated residual life
- Conclusions
- Suggestion: Revisiting crack growth laws to include effects of residual stresse adequately

Effect of residual stress on fatigue load of a crack

SIF due to residual stress:

$$K_{Irs} = \int_{0}^{a} \sigma_{y}(x) \cdot h(x,a) \cdot dx$$

Total SIF:

Fatigue crack load:

$$K_I = K_{Iapp} + K_{Irs}$$

$$\Delta K = \Delta K_{app}$$
$$R(a) = \frac{K_{\min}(a) + K_{Irs}(a)}{K_{\max}(a) + K_{Irs}(a)}$$

Measurement of residual stresses by the Cut-Compliance-Method

Measurement principle:

- Incremental cutting along x causes re-distribution of the stressfield in the vicinity of the cut
- The changing stress-field leads to a change of strain at the measurement location M as a function of cut depth a, $\epsilon_M(a)$.
- From the meassured curve $\epsilon_M(a)$ the original stress-distribution $\sigma_{rs}(x)$ can be evaluated by an inverse elastic analysis

Evaluation procedure

Residual stress measurements in railway axles

a) Destructive mode of application:

Through-the-thickness measurement by an axial slice

b) Semi-destructive mode:

Near-surface measurement

Measured residual stress distribution

Results from Gänser et.al, IJF, 2016:

Examples of near-surface stress profiles

Variability of residual stress profiles along cercumference

For comparison:

Residual stress profiles after stress relieving (red and green curves)
due to to a slight manual impact by a steel hammer (blue curve)

Examples of near-surface stressprofiles

Axle with visibel traces of contact with friction

Stress profiles in regions of friction

Stress profiles at locatuins unaffected by friction

Stresses at location of maximum service stress

Stress due to service load

10

Stress intensity factors for surface cracks at critical location

100

50

K_I(a) due to primary stresses (normalized)

10 -50 -50 -100 -150 -200 -250 **a [mm]**

SIF infolge Eigenspannungen und Presssitz

K_I(a) due to residual stresses (red) and due to press-fitting (blue)

Calculation of crack growth in service

R

Results

Effect of initial crack depth on residual life

Effect of residual stress on residual life

Conclusions

- Residual stresses have a tremendous effect on crack-growth rate under rotating bending
- Accounting for residual stresses is indispenable in residual life calculations of railway axles
- If there are significant compressive stresses at depth 1 mm 10 mm, the near-surface residual stresses (depth < 0.5 mm) are not crucial.
- Typical (reliable) residual stress distributions should be known for the materials and fabrication procedures of axles in question
- Details of the da/dN-modelling in the near-threshold regime and crack closure are of key importance
- It is likely that there is an interaction between residual stress and crackclosure effects, particularly for R<0. It should be accounted for in the crackgrowth laws

Revisiting fundamentals of fatigue crack growth (such as Paris' law or NASGROW-equation) is advisable.

Revisiting Paris'law

Paris'law (empirical):

$$\frac{\Delta a}{\Delta N} = C(R) \cdot \Delta K^{n}$$

Analytical relation:

$$\frac{\Delta a}{\Delta N} = C_{i} \cdot \frac{E}{R_{p02}} \cdot \frac{(\delta_{\max} - \delta_{\min})^{2}}{\delta_{cf} - \delta_{\max}} \quad \text{with} \quad \delta = \frac{K_{i}^{2}}{m \cdot E \cdot R_{p0.2}}$$

Simplified version:
$$\frac{\Delta \alpha}{\Delta V} = C_s \cdot \Delta$$

$$\frac{\Delta \alpha}{\Delta \mathcal{V}} = C_s \cdot \Delta \mathcal{S}^* = C_s \cdot \left(\mathcal{S}_{\max} - \mathcal{S}_{\min}\right)^*$$

or in terms of SIF:

$$\frac{\Delta a}{\Delta V} = C_K \cdot \left(K_{\max}^2 - K_{\min}^2\right)^n$$

Most important factors that corrupt transferability:

- **Residual stresses**
- Crack closure -

--2

Revisiting crack closure effects

Extension of crack-growth law to include crack closure:

$$\frac{\Delta a}{\Delta N} = C_{s} \cdot \left(\delta_{\max} - \delta_{sp-p} - \delta_{tk-im}\right)^{m}$$

in terms of SIF:
$$\frac{\Delta a}{\Delta N} = C_{k} \cdot \left(K_{\max}^{2} \cos\left(-K_{sp-p}^{2}\right) - K_{tk-im}^{2}\right)^{m}$$

with:
$$K_{\max} \sin = K_{\max} + K_{rer}$$
$$\Delta K_{tk-im} = E \cdot \sqrt{b}$$
$$K_{sp-p} = f(R_{eit}) \cdot K_{\max} \sin e^{-t}$$
$$R_{eff} = \frac{K_{sp-remote}}{K_{\max} \sin e^{-t}} \quad (>0)$$

Remote crack closure:

