

M. Carboni, S. Bruni, S. Cervello

Axles are designed against the fatigue limit according to:

Typical in-service failures due to:

- corrosion-fatigue
- ballast impacts

These phenomena are not included in relevant standards

Crack dimension

Damage Tolerance

EN 13261

EN 13103 EN 13104

A1N		
Ultimate Strength [MPa]	600	
Young's Modulus [GPa]	206	
Poisson's Ratio	0.33	
Plane Stress Fracture Toughness (K _c) [MPa]	90	
Plane Strain Fracture Toughness (K _{IC})[MPa]	52	
Yield Strength [MPa]	370	

Proposed solution: LURSAK thick coating

Planned inspection intervals:

Application freight axle for Y25 bogie

Protection against ballast impacts

- Experimental impact tests according to EN 13261
- Experimental impact tests using real ballast
- Simulation of crack propagation
- Conclusions

Chunks

Experimental set-up

Laser

Laser signal and weight

Tests conditions

Axle	Energy 12J	Energy 22J	Energy 32J
Uncoated	X	X	Х
Newly coated	X		Х
Newly coated at T=-25°C	X		Х
Aged coating	X		Х
Aged coating at T=-25°C	X		Х

Tabella 2.8 Cicli termici per invecchiamento vernice LURSAK

	orario entrata in	orario entrata in	
	forno	freezer	ore totali in forno e in freezer
data	T=50°C	T=-5°C	h
20/03/2013	8:30	16:30	8h in forno, 7.30 h freezer
21/03/2013	8:30	16:30	8h in forno, 16 in freezer
22/03/2013	8:30	16:30	8h in forno, 16 in freezer
23/03/2013	-	-	freezer 24h
24/03/2013	-	-	freezer 24h
25/03/2013	8:30	16:30	8h in forno, 16 in freezer
26/03/2013	8:30	16:30	8h in forno, 16 in freezer
27/03/2013	8:30	16:30	8h in forno, 16 in freezer
28/03/2013	8:30	16:30	8h in forno, 16 in freezer
29/03/2013	8:30	16:30	8h in forno, 16 in freezer

- Total time for the aging process: 1 month
- Relevant standard: ASTM D 6944 – 03

Uncoated, E=12 J Max depth: 0.88 mm

Uncoated, 45° angle, E=12 J Max depth: 0.2 mm

Uncoated, E=22 J Max depth: 0.95 mm

Protection against ballast impacts

Uncoated, E=32 J Uncoated, 45° angle, E=32 J Max depth: 1 mm

Max depth: 0.5 mm

Newly coated, E=12 J Newly coated, E=32 J

Newly coated, 45° angle E=32 J

Aged coating, E=12 J

Aged coating, E=32 J

POLITECNICO DI MILANO

- Even if some cases showed detachment of the coating, no damage of the underlying metal was observed also considering about three times the standard energy
- The uncoated configuration is the most dangerous and a linear correlation between the impact energy and the corresponding damage is highlighted
- The worst damage is achieved by perpendicular impacts

Experimental impact tests using real ballast

The experimental set-up was obtained modifying a "rooster booster" cannon

Protection against ballast impacts

(a

b

Low speeds representing freight applications

Axle	Energy [J]	Stone speed [km/h]
Uncoated	68	112.5
Newly coated	280	251.3
Aged coating	225	251.3

High speeds representing high speed applications

Axle	Energy [J]	Stone speed [km/h]
Uncoated	979	411.3
Newly coated	559	363.0
Aged coating	575	385.8

Due to the experimental difficulties, the obtained speeds (and energies) are significantly higher than the real ones for freight and high speed trains No tests at $T=-25^{\circ}C$

Uncoated

(b)

(a)

Aged coating

b

d

d

·

Experimental impact tests using real ballast

- It's really difficult to find out a correlation between the standardized test and the real ballast impacts: is the standardized test significant?
- Ballast impacts were able to damage the metallic material under coating, with a maximum impact depth equal to 0.5 mm: this confirms the too high energies gotten during the tests, because experience on more than 10000 wheel-sets over the last 5 years never showed any damage of the metallic material
- The uncoated configuration reaches the same damage of the standardized test at a very high energy (about 800 J)

14

Simulation of crack propagation

Semi-circular initial defect in each section:

- $a_i = 2 \text{ mm}$ for uncoated axle
- $a_i = 1 \text{ mm}$ for coated axle

Load spectra obtained by dynamic analyses of the train (tare + full payload) One repetition: 22659 km

Simulation of crack propagation

Crack growth predictions were carried out by AFGrow v. 4.0012.15

$$\frac{da}{dN} = C \cdot \left[\left(\frac{1-f}{1-R} \right) \cdot \Delta \mathbf{K} \right]^m \cdot \frac{\left(1 - \frac{\Delta K_{th}}{\Delta K} \right)^p}{\left(1 - \frac{K_{max}}{K_c} \right)^q}$$

$$\Delta K_{th} = \Delta K_0 \frac{\sqrt{\left(\frac{a}{a+a_0}\right)}}{\left(\frac{1-f}{(1-A_0)(1-R)}\right)^{(1+C_{th}R)}}$$

Experimental data were collected adopting compression pre-cracking techniques

Press-fit (Sec. 2)

Bending

Protection against ballast impacts

Simulation of crack propagation

	UNCOATED		COATED	
	$a_i = 2 \text{ mm}$		<i>a_i</i> = 1 mm	
	km	a _f [mm]	km	a _f [mm]
SEC. 1	107	no propagation	107	no propagation
SEC. 2	6.797×10^{6}	30	107	no propagation
SEC. 3	107	no propagation	10 ⁷	no propagation

For the considered service case, the coated axle never fails within 10⁷ km The uncoated one fails at the T-

transition within 10⁷ km

The effect of thick coating protections against ballast impacts was analysed for A1N axles adopted in Y25 bogies. Results can be summarised:

- experimental tests according to standards showed, in some cases, detachment of the coating, but no damage of the underlying metal
- it's really difficult to find out a correlation between the standardized test and real ballast impacts
- ballast impacts, characterized by energies much higher than the real ones, were able to damage the metallic material below the coating
- damages start to appear for energies representative of high speed applications
- crack growth simulations showed no failure, within 10⁷ km, of the coated chunks making the calculation of the probability of failure and the comparison with the uncoated configuration meaningless (at least for the considered applicative case)