

Analysis of local stress concentration at transitions

ESIS TC24 Meeting 1-2 October, 2014, POLIMI (Milano)

Aitor Landaberea CAF S.A. – Wheels, Axles and Gearboxes Business Unit

Contents

Introduction

- Axle calculations Current status
- Development of numerical models
- Parametric analysis of stress concentration factors
- Axle fatigue test simulation
- Complete wheelset modelling
- Conclusions and further work

Introduction Objective

- To develop numerical axle modelling using the finite element method
- To analyse the main existing fatigue criteria which can be used to design axles
- To define general recommendations on the generation of numerical models
- To develop a commonly accepted numerical validation process

Contents

- Introduction
- Axle calculations Current status
- Development of numerical models
- Parametric analysis of stress concentration factors
- Axle fatigue test simulation
- Complete wheelset modelling
- Conclusions and further work

Axle calculations - Current status Introduction

- Actual EN 1310X standards apply beam calculations for axle design
- References:
 - ERRI B136/RP11 (1979)
 - Kammerer (1964)
 - ...
- Methodology:
 - Method to calculate forces acting on the axle
 - Method to calculate stresses in different sections of the axle
 - Definition of allowable stresses

Axle calculations - Current status ERRI B136/RP11 – Calculation of stresses on the axle

- General criteria: $\sigma_d < \sigma_f$
 - σ_d = Dynamic stress
 - σ_f = Allowable stress
- *K_f* = Fatigue SCF (material dependent)

 $\sigma_d = K_f \frac{32 \cdot MR}{\pi d^3}$

$$K_{f} = \frac{S_{e} (unnotched)}{S_{e} (notched)}$$

- K_f in EN 1310X derived from tests performed by Kammerer
- σ_f = Allowable stresses (EA1N)

	Fatigue strength (MPa)	SF	σ_{f} (MPa)
Body	200	1.2	166
Seat	120	1.2	100

Axle calculations - Current status Stress concentration factors

- Stress concentration factor, K_t : Relation between the local stress σ and the nominal stress S.
- In bending: $S = \frac{32 \cdot M \cdot d}{\pi (d^4 d^{4})}$
- In the transition there is a biaxial stress state.
- Uniaxial Hooke's law not applicable to strain and stress in longitudinal direction.
- From elasticity theory:
 - Local 1. principal stresses: $K_{t, \sigma 1} = \sigma 1 / S$
 - Local longitudinal strains: $K_{t,\epsilon} = \epsilon \times E / S$
 - Local equivalent stresses: $K_{t,\sigma eqv} = \sigma_{eqv} / S$

Axle calculations - Current status Stress concentration factors

• K_f = Fatigue SCF

$$K_f = 1 + q(K_t - 1)$$

- Railway axles:
 - Rm > 550 MPa
 - R = 75 mm

 $q \approx 0.95$ $K_f \approx K_t$ (confirmed by experiments)

WP2 - New axle fatigue design method Stress concentration factors

- Kammerer (SNCF) fatigue tests of axles (1/3 scale, d = 60 mm, r = 2, 5, 6, 10, 15, 25 mm) in 1960s
- Nominal stresses calculated by beam theory No strain gauges applied
- Tests results used to define fatigue limits and shape factors (K_f) introduced in EN 13103/4
- Shape factors of Kammerer/EN standards are ≈ 20% lower than those obtained by measurements, literature or FEA

Axle calculations – Current status Design of the transition – Influence of C on the maximum strain/stress

- For a given set of geometrical parameters, a short transition increases the maximum stress
- **Design criteria**: C > Cmin. Transition length big enough to ensure that the peak stress is at the big radius near to the end of the transition

Axle calculations - Current status Stress concentration factors

- Local stresses acting on the transitions of the axles are higher than those calculated according to EN 13103/4.
- EXPERIENCE shows that the fatigue limits of the axles based on local stresses are higher than those established in the current standards.

ACTUAL DESIGN PROCEDURE IS SAFE

- Numerical methods needed:
 - Optimization of the design of axles
 - Clarifications to avoid misunderstandings.
- Real local fatigue limits needed (WP3)

FP7-265706 – EURAXLES Collaborative Project

Contents

- Introduction
- Axle calculations Current status
- Development of numerical models
- Parametric analysis of stress concentration factors
- Axle fatigue test simulation
- Complete wheelset modelling
- Conclusions and further work

Development of numerical models Introduction

- Finite element softwares:
 - Abaqus, Ansys
 - Others (Cosmos, I-deas NX, CATIA)
- Development of models
 - Convergence analysis
- Model validation: Comparison with experiments

Model validation F1 D/d=1.187

Kt, ϵ max = 1,20

FP7-265706 - EURAXLES Collaborative Project

Model validation F4 D/d=1.12

Model validation F4 D/d=1.08

FP7-265706 – EURAXLES Collaborative Project

2,0

1,8

1,6

1,4

1,0

0,8

0,6

0,4

0,2

0,0

1,2 **کٹ**

Model validation

-5

0

5

10

15

20

True Distance [mm]

25

30

35

40

45

50

55

90

- 85

60

Model validation Kt - Summary

- Good adjustment of models
- Linear models give better adjustment than non-linear models (generally applicable to high interference areas, e.g. wheels and pinions)

Model validation Fatigue analysis - Motor axle F1 D/d=1.15

- Test results
 - H_{med} is the point of crack initiation

Serial nº	Crack extension(mm)	H ini(mm)	H fin(mm)	H med(mm)
73188-27	115	13	21	16
73188-25	120	9	24	17
73188-28	120	8	22	16
73188-30	120	10	23	16

ESIS TC24, Milano, 2014

Model validation Fatigue analysis - Motor axle F1 D/d=1.15

- Principal Stresses and Dang Van Multiaxial fatigue coefficient along the transition
 - CSDV non linear model > linear model (influence of mean stresses)
 - CSDV non linear/ CSDV linear = 1.04
- Failure (and position) well predicted by both models

FP7-265706 – EURAXLES Collaborative Project

Contents

- Introduction
- Axle calculations Current status
- Development of numerical models
- Parametric analysis of stress concentration factors
- Axle fatigue test simulation
- Complete wheelset modelling
- Conclusions and further work

Parametric analysis of stress concentration factor Motivation

- K factors of EN 13103/4 should be reviewed.
- Multiple radii in typical axle transitions.
 - Position of the peak stress can be in small radius
 - Peak stress (and consequently Kt) may differ from bibliography data
- Objective: To derive mathematical expressions for Kt in typical simple transitions of railway axles.
- Parametric analysis based on DOE (Design of Experiments) has been performed.
- Geometrical constraints to avoid unfeasible combinations final number of combinations = 8.880

Parametric analysis of stress concentration factor Results

- Output:
 - Maximum values along the transition area in terms of von Mises stress, maximum principal stress and maximum principal strain.
 - Location in axial coordinates of the aforementioned variables.
 - Values of the maximum stress/strain concentration factor Kt.

Parametric analysis of stress concentration factor Results

- Numerical adjustment:
 - Minimum transition length C:

$$C_{min} = -8.3257 - 0.1845 \cdot d + 0.6364 \cdot R + 7.0194 \cdot \frac{D_n}{D} + 0.0007342 \cdot d \cdot R + 0.2166 \cdot d \cdot \frac{D}{d}$$
$$- 0.002060 \cdot d \cdot r - 0.3632 \cdot R \cdot \frac{D}{d} + 0.004535 \cdot R \cdot r + 0.4270 \cdot \frac{D}{d} \cdot r - 0.2936$$
$$\cdot \frac{D_n}{D} \cdot r$$

• Kt when peak stress at R:

$$K_{t,VM} = 1.2045 + 0.002535 \cdot d - 0.007553 \cdot R + 0.03702 \cdot \frac{D_n}{D}$$
 if C<25 mm

$$K_{t,VM} = 1.2453 + 0.001278 \cdot d - 0.003258 \cdot R - 0.001209 \cdot C$$
 if $C \ge 25 \text{ mm}$

Parametric analysis of stress concentration factor Assessment of Cmin

• Equations:

	Cmin [mm]
Ore 136	$1.25 \cdot d \cdot \left(\frac{D}{d} - 1\right)$
UIC515-3	35 if $d \in (155,170)$ 40 if $d \in (175,205)$
EN13103/4	e.g. 35
EIBFW-I Project	$C \ge \left(0,0952 \cdot d + 20,6\right) \frac{\left(\frac{D}{d} - 0,2113\right)}{0,9351} \cdot \frac{\left(\frac{D_{N}}{D} + 5,192\right)}{6,468}$
Euraxles	$C_{min} = -8.3257 - 0.1845 \cdot d + 0.6364 \cdot R + 7.0194 \cdot \frac{D_n}{D} + 0.0007342 \cdot d \cdot R + 0.2166 \cdot d \cdot \frac{D}{d}$ $- 0.002060 \cdot d \cdot r - 0.3632 \cdot R \cdot \frac{D}{d} + 0.004535 \cdot R \cdot r + 0.4270 \cdot \frac{D}{d} \cdot r - 0.2936$ $\cdot \frac{D_n}{D} \cdot r$ $C_{min} = -3.79336 + 0.0384789 \cdot d + 0.381324 \cdot R + 0.0279497 \cdot D_N$

Parametric analysis of stress concentration factor Assessment of Cmin

- Graphical comparison:
 - EN1310X not conservative

Contents

- Introduction
- Axle calculations Current status
- Development of numerical models
- Parametric analysis of stress concentration factors
- Axle fatigue test simulation
- Complete wheelset modelling
- Conclusions and further work

Simulation of axle testing Fatigue test rigs

- LR1: "Minden" type. A resonant rotating fatigue test system with an unbalanced mass rotating at the top of the axle which generates the desired bending moment at the section of interest.
- LR2: "Vitry" type. Three point bending with a load applied at the centre of the axles by an hydraulic actuator.

FP7-265706 – EURAXLES Collaborative Project

Simulation of axle testing Results – Transition

- Analysis:
 - 2 test rigs
 - Cases: M1 & M8
 - Linear & Non-linear models
 - Stress due to interference (constant load)
- Same results for both test rigs.
- Linear models: Good prediction of value and position of the peak stress.
- Kt factors similar in all cases.

Maximum friction coefficent: 0.3

	45 KNm	56 KNm	67 KNm
i = 0.308 mm	1.2485	1.2464	1.2422
l = 0.165 mm	1.2359	1.2286	1.2222

Minimum friction coefficent: 0.05

	45 KNm	56 KNm	67 KNm
i = 0.308 mm	1.2328	1.2304	1.2288
l = 0.165 mm	1.2295	1.2282	1.2275

ESIS TC24, Milano, 2014

Shear stress

Simulation of axle testing Results – Seat

- Similar stress distributions in LR1 and LR2 near the axle body transition.
- LR2, symmetrical distributions theoretically predicted (conical entrance not considered in the models)

Pressure

FP7-265706 - EURAXLES Collaborative Project

Contents

- Introduction
- Axle calculations Current status
- Development of numerical models
- Parametric analysis of stress concentration factors
- Axle fatigue test simulation
- Model validation
- Complete wheelset modelling
- Conclusions and further work

Complete wheelset simulation Introduction

- Analysis of complete wheelsets
 - Motor
 - Trailer
- 3D and 2D Axisymmetric with Fourier's series expansion
- Comparison with EN 1310X

Complete wheelset simulation EMU Motor wheelset - Model

- Non-linear and linear models
- Skin of shell elements for post-processing
- Calculation times high

	Full model	Half model
Nodes	1261532	792680
Elements	1233132	764852

Complete wheelset simulation EMU Motor wheelset – Results example

- Stress distribution along the surface of the axle.
- SCF calculation. Can be applied for beam analysis (as EN 1310X)

Complete wheelset simulation EMU Motor wheelset – Analysis methods

- Method 1:
 - Constant bending moment and torque applied to the FEM model (linear and non linear)
 - Calculation of Kt,ε in different sections
 - Application of beam theory (as current EN 1310X)
- Method 2:
 - Application of EN 1310X loads to the model
 - Calculation of stress distributions in the different sections
 - Fatigue criteria (Tresca) directly from post-processed results

Complete wheelset simulation EMU Motor wheelset – Results

Linear models with mounted components too conservative

• Method 2

Method 1

12

Complete wheelset simulation EMU Motor wheelset – Results: Method 1

$$\sigma = \sigma_1 - \sigma_2 = \sqrt{\sigma_n^2 + 4\sigma_t^2} = \sqrt{\left(K_\sigma \cdot \sigma_{ba}\right)^2 + 4\left(K_\tau \cdot \tau_{ta}\right)^2}$$

SF =	σ_{allow}
	σ

	Nominal stresses FE values Strain based			s Strain- æd	Methodology 1					EN 13104					
Section	σ ba	au ta	κ _{ε EF.}	κ _{γ EF.}	σ_1	σ_2	σ2/σ1	$\sigma = \sigma_1 - \sigma_2$	σ_{allow}	SF	K	σ	σ_{allow}	SF	SF ₁ /SF _{EN}
1	65.08	0.00	1.26	1.15	82.02	0.00	0.00	82.02	285	3.47	1.012	65.88	240	3.64	0.95
2	77.19	0.00	1.47	1.26	113.44	0.00	0.00	113.44	285	2.51	1.05	81	240	2.96	0.85
3	125.17	5.23	1.52	1.29	190.18	-0.24	0.00	190.42	285	1.50	1.056	132.63	240	1.81	0.83
4	125.17	5.23	1.32	1.17	165.80	-0.23	0.00	166.03	285	1.72	1.056	132.63	240	1.81	0.95
5	85.22	3.53	1.26	1.17	107.78	-0.16	0.00	107.93	285	2.64	1.295	110.73	240	2.17	1.22
6	79.23	3.27	1.54	1.38	121.92	-0.17	0.00	122.09	285	2.33	1.678	133.4	240	1.80	1.30
7	78.02	-3.27	1.54	1.38	120.30	-0.17	0.00	120.46	285	2.37	1.678	131.37	240	1.83	1.30
8	82.75	-3.53	1.26	1.16	104.35	-0.16	0.00	104.51	285	2.73	1.295	107.55	240	2.23	1.22
9	127.39	-5.60	1.21	1.12	153.98	-0.25	0.00	154.23	285	1.85	1.018	130.25	240	1.84	1.00
10	88.29	-5.60	1.35	1.16	119.29	-0.35	0.00	119.64	285	2.38	1.018	90.61	240	2.65	0.90
11	53.41	0.00	1.47	1.26	78.52	0.00	0.00	78.52	285	3.63	1.05	56.05	240	4.28	0.85
12	45.06	0.00	1.26	1.15	56.79	0.00	0.00	56.79	285	5.02	1.012	45.59	240	5.26	0.95

Complete wheelset simulation EMU Motor wheelset – Results: Method 2

 σ_{allow} : Corrected value for E· ϵ 1 = 285 MPa

	Nominal stresses FE values Strain- based				Methodology 1						Methodology 2							
Section	σ ba	τ_{ta}	К <i>в ЕF</i> .	κ _{γ EF.}	σ_1	σ_2	σ2/σ1	$\sigma = \sigma_1 - \sigma_2$	σ_{allow}	SF	σ_1	σ_2	ε1*E	σ2/σ1	$\sigma = \sigma_1 - \sigma_2$	σ_{allow}	SF	SF ₁ /SF ₂
1	65.08	0.00	1.26	1.15	82.02	0.00	0.00	82.02	285.00	3.47	102.32	14.81	97.87	0.14	87.51	254.8	2.91	1.19
2	77.19	0.00	1.47	1.26	113.44	0.00	0.00	113.44	285.00	2.51	124.96	26.12	117.12	0.21	98.84	240.5	2.43	1.03
3	125.17	5.23	1.52	1.29	190.18	-0.24	0.00	190.42	285.00	1.50	179.40	39.18	167.64	0.22	140.21	238.4	1.70	0.88
4	125.17	5.23	1.32	1.17	165.80	-0.23	0.00	166.03	285.00	1.72	166.27	29.29	157.48	0.18	136.97	247.9	1.81	0.95
5	85.22	3.53	1.26	1.17	107.78	-0.16	0.00	107.93	285.00	2.64	104.67	9.69	101.76	0.09	94.98	266.0	2.80	0.94
6	79.23	3.27	1.54	1.38	121.92	-0.17	0.00	122.09	285.00	2.33	123.89	23.08	116.96	0.19	100.81	245.6	2.44	0.96
7	78.02	-3.27	1.54	1.38	120.30	-0.17	0.00	120.46	285.00	2.37	130.25	25.12	122.72	0.19	105.14	244.2	2.32	1.02
8	82.75	-3.53	1.26	1.16	104.35	-0.16	0.00	104.51	285.00	2.73	102.65	8.29	100.16	0.08	94.35	268.5	2.85	0.96
9	127.39	-5.60	1.21	1.12	153.98	-0.25	0.00	154.23	285.00	1.85	148.37	19.97	142.37	0.13	128.39	257.0	2.00	0.92
10	88.29	-5.60	1.35	1.16	119.29	-0.35	0.00	119.64	285.00	2.38	118.44	23.10	111.51	0.20	95.34	243.7	2.56	0.93
11	53.41	0.00	1.47	1.26	78.52	0.00	0.00	78.52	285.00	3.63	99.27	21.10	92.94	0.21	78.17	239.7	3.07	1.18
12	45.06	0.00	1.26	1.15	56.79	0.00	0.00	56.79	285.00	5.02	80.87	11.80	77.33	0.15	69.06	254.5	3.69	1.36

FP7-265706 – EURAXLES Collaborative Project

Complete wheelset simulation EMU Motor wheelset – Results: Comparison

FP7-265706 - EURAXLES Collaborative Project

Complete wheelset simulation Trailer wheelset UIC type B 22,5 t - Model

• Models: 3D and 2D axisymmetric with Fourier series expansions (Ansys)

- Stress distribution along the transitions similar in both models
- Calculation time 2D models << 3D models.
- Calculation time non-linear models >> linear, merged models

9054	3D	2D	2D refine		
Merged nodes	3h 13min 11s	7min 4s	24min 31s		
Constraint equations	/	15min 0s	/		
Contacts Node-to-Node	2d 20h 53min 55s	1d 11h 25min 32s	2d 19h 24min 45s		
Contacts Surf-to-Surf	1d 20h	/	/		

Contents

- Introduction
- Axle calculations Current status
- Development of numerical models
- Parametric analysis of stress concentration factors
- Axle fatigue test simulation
- Complete wheelset modelling
- Conclusions

Conclusions General

- Finite element modelling has been demonstrated to accurately reproduce the stress fields acting on railway axles.
- Local stresses estimated by finite element modelling and correlated by experimental measurements are higher than the stresses calculated according to the actual EN 1310X standards (*K_t* higher than *K_f* defined in EN 1310X)
- At the same time, the fatigue strength in terms of local strains and stresses is higher than considered by the standards.
- Experience shows that the actual design procedure of axles is safe.
- Complete wheelset models require large computational times, especially if non linear conditions are introduced.
 - 2D axisymmetric models with Fourier expansions reduce time

Conclusions General - Modelling

- 3D or 2D with Fourier expansion can be applied
- Element type: linear elements OK
- Element size: convergence analysis should be performed to check the validity of the models
 - If peak stress at R: typical size ≈ 4 mm
 - If peak stress at r: typical size ≈ 1 mm
- Post-processing
 - Unaveraged results recommended to check convergence and effect of singularities
 - A skin of membrane elements can be used to facilitate the analysis
- General design recommendation: peak stress at the end of the transition (R)
 - Transition length C > Cmin

Conclusions General - Transitions

- Transitions:
 - Simple and adjacent transitions (wheel and brake disc seats) can be modelled using tied non coincident meshes (linearised models)
 - For simple and sufficiently long transitions, analytical Kt values can be applied.
- Grooves
 - Contact interaction (non linear behaviour) is recommended to model the wheels, gears and brake discs with adjacent grooves
 - Recommended friction coefficient = 0.6
 - Components with low interference and DN/D (bearings, labyrinths) can be removed from the models

Conclusions Proposal to complement EN 1310X

- Forces: Current EN 1310X
- Stresses:
 - Applying beam theory in the different sections
 - K_t
 - *K*_{*t*,ε}
 - Analytical expressions derived in EURAXLES for simple transitions
 - FEA following recommendations derived in EURAXLES
- Allowable values
 - F1, F3/F4: From WP3
 - Safety factors: additional investigation needed

$$\sigma_d = K_t \frac{32 \cdot MR}{\pi d^3}$$

Thank you for your attention

FP7-265706 – EURAXLES Collaborative Project