EURAXLES PROJECT WP 3.3 Modelling Methods for helping Design against Fretting Fatigue

WP 3.3a: Initiation of Fretting Fatigue in Press Fits Michael Luke, Igor Varfolomeev, Fraunhofer IWM Freiburg, Germany

WP3.3b: Assessment of Propagation Phase Prof. Stefano Beretta, Politecnico di Milano

Motivation

- Up to date full scale tests have to be performed to validate new axle designs and press fit configurations with respect to their fatigue strength
- A representative number of tests is required for statistical data analysis
- Simulation tools may help to pre-evaluate press fit parameters and to save time/costs

Test rig for fatigue strength assessment of press fits (right) and fatigue cracks in a press fit (left). Traupe et al., Safe and Economic Design of Running Gears, IMAB TU Clausthal, 2004

Fretting Fatigue Tests - Goal and Scope of the Study

- Material characterization under fretting fatigue conditions
- Demonstrate the applicability of numerical analyses to predict the resistance towards initiation of fretting fatigue cracks in railway axles
- Material-pairing EA4T/R8, Net stress ratio R = 0.1

Specimen & Pad Geometries

Fretting Fatigue – Overview of Tests performed

Test frequency f=120-140Hz

Fretting fatigue has been initiated for different loading scenarios depending on tensile stress σ_{11} , tranversal loading Q, parallel length I_P and contact length I_c

Specimen	Contact	Geometry	Tensile stress	Transvers load	Cycles N	Cracks?	Pad	Remarks
	zone	wxtxL in mm	in MPa	in kN			geometry	
YO1-FF-1	1	10x3x100	350	4,00	1,00E+06	-	A	preliminary test, specimen polished
	2	10x3x100	350	2,00	1,00E+06	-	А	preliminary test, specimen polished
YO1-FF-2	1	6x3x100	350	3,00	1,00E+06	-	Α	preliminary test, specimen polished
	2	6x3x100	350	1,40	1,00E+06	-	А	preliminary test, specimen polished
YO1-FF-3	1	6x3x100	350	3,00	1,05E+06	+	Α	preliminary test, specimen polished,
								specimen failure,criterion ∆f=2x0,1Hz
YO1-FF-4	1	6x3x100	350	3,00	2,98E+06	+	А	pads and specimen polished,
								specimen failure,criterion ∆f=2x0,1Hz
YO1-FF-5	1	6x3x100	350	3,00	5,00E+06		Α	pads and specimen not polished => cracks not detectable
	2	6x3x100	350	3,00	5,00E+06		Α	pads and specimen not polished => cracks not detectable
YO1-FF-6	1	6x3x100	350	4,50	5,00E+06		А	pads and specimen not polished => cracks not detectable
YO1-FF-7	1	6x3x100	350	2,00	3,00E+06			pads and specimen not polished => cracks not detectable
	2	6x3x100	350	3,00	3,00E+06			pads and specimen not polished => cracks not detectable
YO1-FF-8	1	6x3x100	350	3,00	5,00E+06			pads and specimen not polished => cracks not detectable
	2	6x3x100	350	2,00	5,00E+06			pads and specimen not polished => cracks not detectable
YO1-FF-9	1	6x3x100	350	3,00	5,00E+06	+	В	pads and specimen polished, test stopped
YO1-FF-10	1	6x3x100	370	1,50	1,00E+06		А	pads and specimen not polished => cracks not detectable
YO1-FF-11	1	6x3x100	350	3,00	1,00E+06	+	В	pads and specimen polished, test stopped
	2	6x3x100	330	1,50	1,00E+06	+	В	pads and specimen polished, test stopped
YO1-FF-12	1	6x3x100	370	1,50	1,00E+06	+	В	pads and specimen polished, test stopped
	2	6x3x100	350	1,50	1,00E+06	+	В	pads and specimen polished, test stopped
YO1-FF-13	1	6x3x100	200	1,50	1,00E+06	-	В	pads and specimen polished, test stopped
	2	6x3x100	250	1,50	1,00E+06	-	В	pads and specimen polished, test stopped
YO1-FF-14	1	6x3x100	300	1,50	1,00E+06	+	В	pads and specimen polished, test stopped
	2	6x3x100	270	1,50	1,00E+06	+	В	pads and specimen polished, test stopped
YO1-FF-15	1	6x3x100	350	1,50	2,00E+05	+	В	pads and specimen polished, test stopped
	2	6x3x100	250	1,50	1,00E+06	-	В	pads and specimen polished, test stopped
YO1-FF-16	1	6x3x100	200	1,50	1,00E+06	-	В	pads and specimen polished, test stopped
	2	6x3x100	200	3,00	1,00E+06	-	В	pads and specimen polished, test stopped
YO1-FF-17	1	6x3x100	250	3,00	1,00E+06	-	В	pads and specimen polished, test stopped
	2	6x3x100	330	3,00	1,00E+06	+	В	pads and specimen polished, test stopped
YO1-FF-41	1	6x3x142	250	1,50	1,00E+06	+	В	pads and specimen polished, test stopped
	2	6x3x142	200	1,50	1,00E+06	-	В	pads and specimen polished, test stopped
YO1-FF-42	1	6x3x142	350	1,50	1,00E+06	+	В	pads and specimen polished, test stopped
	2	6x3x142	300	1,50	1,00E+06	+	В	pads and specimen polished, test stopped
YO1-FF-43	1	6x3x142	350	1,50	1,00E+06	+	В	pads and specimen polished, test stopped
	2	6x3x142	200	1,50	1,00E+06	-	В	pads and specimen polished, test stopped

SEVENTH FRAMEW

Pad geometry A, round

Pad geometry B, flat

contact length lc = 1.7mm

Fretting Fatigue – Test Results

YO1-FF-17

tensile stress σ_{11} =330MPa, transversal load Q=3kN, cycles N=1E6 contact zone 2, flat pads

Fretting Fatigue – Test Results

YO1-FF-42

tensile stress σ_{11} =300MPa, transversal load Q=1,5kN, cycles N=1E6 contact zone 2, flat pads

Fretting Fatigue – Test Results

YO1-FF-41

tensile stress σ_{11} =200MPa, transversal load Q=1,5kN, cycles N=1E6 contact zone 1, flat pads

no fretting fatigue cracks detected

Fretting Fatigue – Summary of Test Results

Fretting fatigue cracks were initiated and were found following the loading scenarios

N = 1E6 cycles with Q = 1.5 kN and σ_{11} = 270-350 MPa

- N = 2E5 cycles with Q = 1.5 kN and σ_{11} = 350 MPa
- N = 5E6 cycles with Q = 3 kN and σ_{11} = 350 MPa
- N = 1E6 cycles with Q = 3 kN and σ_{11} = 350 MPa

9

N = 1E6 cycles with Q = 1.5 kN and σ_{11} = 250-350 MPa (with increased parallel specimen length)

loading direction σ_{11}

20 µm

Fretting Fatigue – Numerical Approach: Overview

- Calculation/analysis of influential parameters such as stresses/strains, contact slip
- Application of multiaxial fatigue parameters

© Fraunhofer-Institut für Werkstoffmechanik IWM

FE modelling: Model #1

- **2** D plane strain model, $L \times t \times W = 50 \times 3 \times 6 \text{ mm}^3$
- Round pad surface (initially line contact)
- Coefficient of friction COF = 0.6
- Cyclic tension at R = 0.1

FE modelling: Model #2

- 2D plane strain model, $L \times t \times W = 50 \times 3 \times 6 \text{ mm}^3$
- Flattened pad surface (surface contact)
- Coefficient of friction COF = 0.6
- Cyclic tension at R = 0.1

Stress/Strain Analysis: Model #2

Analysis of Contact slip: Model #2; l_c = 1.7 mm

URAXL

www.euraxles.eu

Fatigue (Damage) Parameters

- Take account of the mean stress and multiaxial stress state
- Allow for comparing test results for different specimen types and loading conditions → potential for component's assessment based on uniaxial S-N curves
- Stress / strain / energy based parameter formulation, e.g.

Smith, Watson, Topper
$$\sigma_{n,\max} \frac{\Delta \mathcal{E}_1}{2} = \frac{\sigma_f'^2}{E} (2N_f)^{2b} + \sigma_f' \mathcal{E}_f' (2N_f)^{b+c}$$
 $P_{SWT} = \sqrt{\sigma_{n,\max} \frac{\Delta \mathcal{E}_1}{2} E}$ Wang, Brown $P_{WB} = \frac{\Delta \gamma_{\max}}{2} + \frac{\Delta \mathcal{E}_n}{2} = 1,65 \frac{\sigma_f'}{E} (2N_f)^b + 1,75 \mathcal{E}_f' (2N_f)^c$ Fatemi, Socie $P_{FS} = \frac{\Delta \gamma}{2} \left(1 + k \frac{\sigma_{n,\max}}{\sigma_0}\right) = \frac{\tau_f'}{G} (2N_f)^{b\gamma} + \gamma_f' (2N_f)^{c\gamma}$

unife

Fatigue (Damage) Parameters: Model #2

Fatigue (Damage) Parameters: Model #2

SWT vs FS: Model #2

Fatigue damage parameter P_{SWT} and P_{FS} as a function of $\sigma_{11},$ I_{P} = 21.07 mm

For $P_{FS} > P_{FS,crit.} = 0,0056$ the initiation of fretting fatigue cracks is expected

Round vs Flat Pads: Model #1 / Model #2

Fatigue parameter P_{FS} as a function of contact length (round pads, flat pads)

IWM

SWT vs FS: Model #2

20

Comparison of fatigue parameter P_{SWT} and P_{FS} for $I_P = 21.07$ mm and 100 mm

Conclusions: Experimental Part

A test configuration which enables the loading of a given material pairing has been developed. By means of this test configuration fretting fatigue cracks initiated and were found following the loading scenarios

N = 1E6 cycles with Q = 1.5 kN and σ_{11} = 270-350 MPa

N = 2E5 cycles with Q = 1.5 kN and σ_{11} = 350 MPa

N = 5E6 cycles with Q = 3 kN and σ_{11} = 350 MPa

- N = 1E6 cycles with Q = 3 kN and σ_{11} = 350 MPa
- N = 1E6 cycles with Q = 1.5 kN and σ_{11} = 250-350 MPa (with increased parallel specimen length)

IWM

Conclusions: Numerical Part

- The P_{FS} fatigue parameter was estimated to be the most suitable one as it takes into account the shear deformation $\Delta \gamma$ in the contact zone
- FE analyses support the experimental finding that increasing the contact area (change from initial line to initial surface contact) facilitates crack initiation
- Test results determined with specimens with an increased parallel length showed that fretting fatigue cracks tend to initiate at lower longitudinal stresses (σ_{11} =250 MPa instead of 270 MPa) applying the same transversal load of Q = 1.5 kN
- Evaluating the experimental findings and the FE calculations an estimate for the critical fretting fatigue parameter $P_{FS,crit} = 0,0056$ was derived
- Due to scale effects up to now the results and the derived $P_{FS,crit} = 0,0056$ are only valid for the small scale specimens investigated
- To be able to evaluate the potential of the approach for an industrial application further investigations and numerical analyses on small and full scale press fits are necessary

Thank you for your attention

