ESIS TC24, Politecnico di Milano, 1st - 2nd October 2014

🗾 Fraunhofer

Outline of the Presentation

- State of the art of the presently applied inspection technology for hollow axles and solid axles
- Conclusion from the Gap Analysis related to in-service inspection
- Identification of possible improvements
 - o Ultrasonic Phased Array technique
 - Synthetic Aperture Focusing Technique SAFT
 - POD Simulation for axle testing
 - Induction Thermography for surface crack detection
 - Condition Monitoring

Hollow Axle Testing - Relevant Areas and Defect Types

Mobile

Hollow Axle Testing

Manual testing

Mechanized testing

Stationary

Fraunhofer

Hollow Axle Testing – Result of Automated Inspection

🗾 Fraunhofer

Solid Axle Testing – Scanning Techniques

🗾 Fraunhofer

Solid Axle Testing

Manual testing

Mechanized testing

Fully automatic testing

Conclusions from the EURAXLES Gap Analysis

- Replacement of manual testing by automated testing to ensure reliability and repeatability, reduce human errors, improve throughput, allow for automatic documentation and data storage
- Improvement of sensitivity without increasing the false calls rate
- Differentiation between critical and non-critical surface imperfections
- Differentiation between geometrical echoes and defect echoes
- Improvement of the spatial resolution especially in the cross-sectional transition areas where the probability of crack initiation is high
- Defect characterization with respect to size, orientation and type in order to evaluate the consequences on the axle's remaining life time (NDE)
- Establishing methods for condition monitoring of axles as a basis for safety increase and condition-based maintenance

Phased Array Technology – End face Solid Axle Testing System

- Solid axle ultrasonic inspection from the axle's end face
- Fully-automatic mobile inspection system using phased arrays
- Application in light and heavy maintenance
- Suitable for all types of solid axles for rolling stock and metro vehicles
- 2 minutes inspection time excluding bearing cap disassembly

Phased Array Technology – Sampling Phased Array (SPA)

- Acquisition and processing of n x n HF-signals in the computer
- Any desired focal law can be calculated
- Application of noise elimination algorithms

Phased Array Technology – SPA with Noise Elimination

Defect locations

Inspection results

Phased Array Technology – SPA for the Inspection of Coated Axles

- Coating with RELEST[®] Protect Wheel by BASF
- Coating thickness ~ 2 mm
- No removal of coating for UT inspection
- Sensitivity should not be influenced by the coating
- High-angle scanning on the train with a mobile SPA-based system in combination with visual testing according to EVIC

Synthetic Aperture Focusing Technique – Motivation for implementation

These possible influences for false indications stand out even more when testing sensitivity is increased !

Synthetic Aperture Focusing Technique – Principle

SAFT B-scan of a fatigue crack and fracture area

Synthetic Aperture Focusing Technique – Example

SAFT B-scan of false indications and of an artificial crack of 1,6 mm depth in the press-fit area

POD Simulation for Axle Testing – Replacing Experiments by Simulation

POD Simulation for Axle Testing – The CIVA POD Module

Replacing complex POD experiments by simulation

- Taking into account uncertainties which influence the US signal
- Deterministic or statistical description of the uncertainties

Uncertainties

- Defect position
- Defect length
- Probe orientation
- Grain size in the material

SEVENTH FRAMEWOR

POD Simulation for Axle Testing – CIVA Simulation for UT of Hollow Axles

SEVENTH FRAMEWOR

Induction Thermography for Surface Crack Detection

Induction Thermography for Surface Crack Detection

Result of data acquisition:

Crack image at several moments during or after heating

Image reconstruction by transformation from time domain to spatial domain

Condition Monitoring – Motivation for its Implementation

- Calculation of the failure probability of an axle cannot consider real loads which act on the axle during its operational life
- Consideration of specific dynamic loads dependent on axle application, railway line characteristics, environmental conditions is only partly possible
- Non-predictable events like impacts from ballast, corrosion, obstacles on the rail, etc. cannot be considered in the life-time calculation models

Condition Monitoring can be an important tool for condition-based maintenance and increase of safety!

Condition Monitoring – Principle of a Wheel Set Monitoring System

Condition Monitoring of Wheel Sets

Monitoring system in test vehicle

TX/RX radio interface

Sensor system inside the hollow shaft with removed bearing cap

Hollow axle sensor system

Condition Monitoring – Detection of Transversal Cracks

- Detection sensitivity for periodic inspection ~ 2 mm deep crack
- Requirements regarding detection sensitivity for a condition monitoring system?

Condition Monitoring – Crack Growth Rate

Crack location in the diameter transition area and crack propagation curve

Crack growth from 20 to 35 mm within ~ 6,000 km

