

Survey of maintenance practices and costs

ESIS TC24 Meeting 1-2 October, 2014, POLIMI (Milano)

Aitor Landaberea CAF S.A. – Wheels, Axles and Gearboxes Business Unit

- Objectives
- RAMS/LCC in railways Survey
- RAMS/LCC tool Definition
- Data collection Analysis of axle failures
- Data collection Reference cases
- Innovative coatings
- LCC parametric analysis
- Reliability and cost analysis
- Conclusions

• Objectives

- RAMS/LCC in railways Survey
- RAMS/LCC tool Definition
- Data collection Analysis of axle failures
- Data collection Reference cases
- Innovative coatings
- LCC parametric analysis
- Reliability and cost analysis
- Conclusions

Overall objectives of WP6

- **Objective**: To review and analyse the market uptake of different solutions to minimize the risk of failure of axles developed during the present project.
- The assessment will follow RAMS/LCC methodologies, a recognized method for assisting optimisation process in engineering systems.
- **RAMS** Acronym Reliability, Availability, Maintainability and Safety
- LCC Acronym for Life Cycle Costs
 - LCC stands for the costs of a system throughout all the phases of its life, from conception to disposal.

RAMS/LCC in railways Introduction

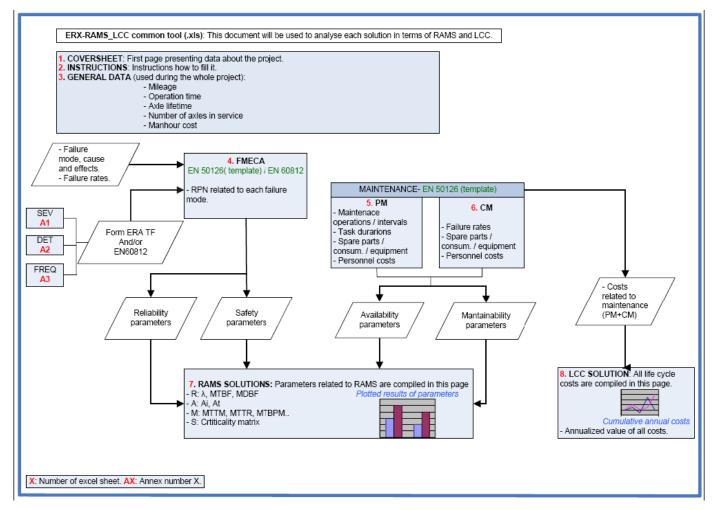
- RAMS/LCC can be used to compare different alternative solutions.
- RAMS/LCC applied in several sectors like automotive and aerospace.
- Incipient in the railway industry.
- Reasons:
 - Different roles of the stakeholders so the transmission of information is not effective.
 - Analysis rely on experimental data difficult, lengthy and costly to obtain.
- European railway sector is moving towards the systematic application of these techniques as demonstrated by the publication of e.g. EN 50126.

- Objectives
- RAMS/LCC in railways Survey
- RAMS/LCC tool Definition
- Data collection Analysis of axle failures
- Data collection Reference cases
- Innovative coatings
- LCC parametric analysis
- Reliability and cost analysis
- Conclusions

RAMS/LCC in railways - Survey Survey – Results

- Most of the participants calculate RAMS/LCC regularly and some have RAMS specialists in the company.
- Operators consider RAMS/LCC requirements in their contracts for the complete vehicle but not specifically for the wheelsets.
- Integrators specify RAMS/LCC parameters in the contracts including the wheelset which are then translated to the manufacturers.
- In the vast majority, the participants use their own databases to manage the RAMS/LCC parameters.
- There is a lack of feedback from operators and maintainers to manufacturers. This fact is one of the main difficulties to improve the railway transport competitiveness.
- In many cases, the tools and information given by the manufacturers are provided by the customers so they are considered as confidential.
- Most participants use their own RAMS analysis software (basically Excel).

- Objectives
- RAMS/LCC in railways Survey
- RAMS/LCC tool Definition
- Data collection Analysis of axle failures
- Data collection Reference cases
- Innovative coatings
- LCC parametric analysis
- Reliability and cost analysis
- Conclusions


RAMS/LCC tool - Definition Requirements derived from the survey

- Excel tool
- FMECA should be considered for safety analysis.
- For LCC calculations, acquisition and operational costs should be considered as they represent the most relevant phases affecting the LCC of axles.
- Maintenance costs should cover both preventive and corrective maintenance.

RAMS/LCC tool - Definition Tool – General chart

RAMS/LCC tool - Definition Safety

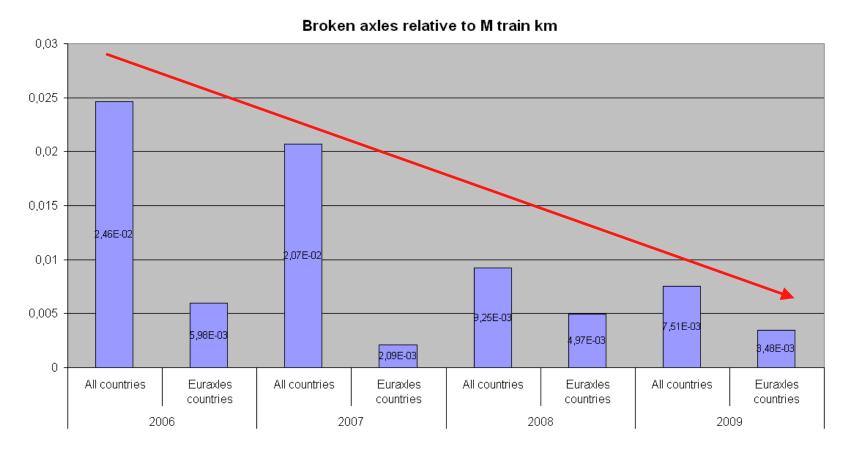
- FMECA and RPN (Risk Priority Number)
- A target value for RPN to determine quantitatively the risk is not attainable at this moment due to the lack of accurate data from service
- FMECA applied to categorize the failure modes and effects and to prioritize efforts.
- Basis for the future to get accurate data for risk calculation.

	CRITICALITY - Curent state								
Failure mode	Failure root cause	Failure rate (FPMK)	Severit	y	Detect	ability	Frequency		RPN
Fatigue crack	Combination of all causes	8,000E-03					Very high: Failures are nearly not avoidable (10)	10	
	Overloading of the wagon	1,000E-03	Unsafe without warning	10	Nearly certain	1	High: repeating failures (8)	8	80
	Overloading by dynamic effects	1,000E-03	Unsafe without warning	10	Nearly certain	1	High: repeating failures (8)	8	80
	Risk Priority Number (RPN) = S * D * F								

FP7-265706 – EURAXLES Collaborative Project

- Objectives
- RAMS/LCC in railways Survey
- RAMS/LCC tool Definition
- Data collection Analysis of axle failures
- Data collection Reference cases
- Innovative coatings
- LCC parametric analysis
- Reliability and cost analysis
- Conclusions

Data collection – Analysis of axle failures Introduction


- Aim: To collect data from service to define reference cases.
- Limited data available.
- Analysis of databases and reports has been performed to estimate the reliability of axles.
 - ERADIS 2011
 - UIC Safety database 2011
 - JSG Task force in freight wagons 2012

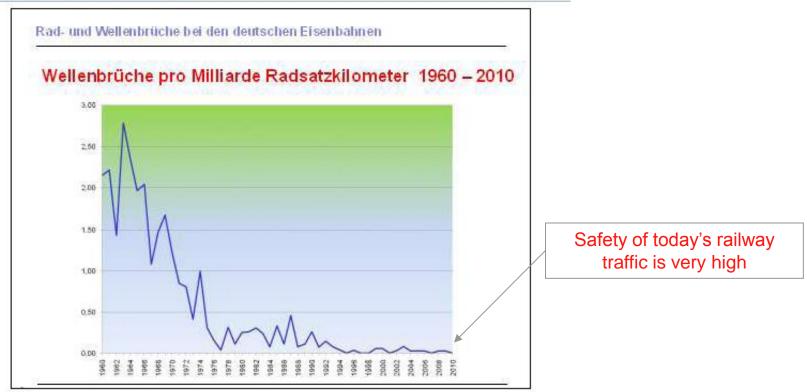
Data collection – Analysis of axle failures Failures

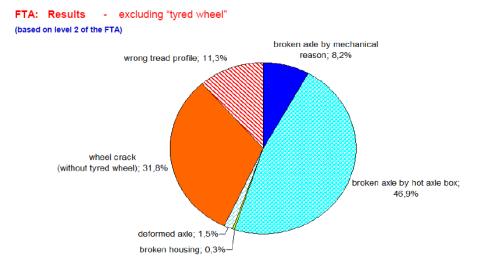
• ERADIS (2006-2009):

Data collection – Analysis of axle failures Failures

• JSG (last 50 years):

Bochumer Verein: Germany




Figure 4: number of axle breaks per billion wheelset kilometers between 1960 - 2010

Data collection – Analysis of axle failures Failures

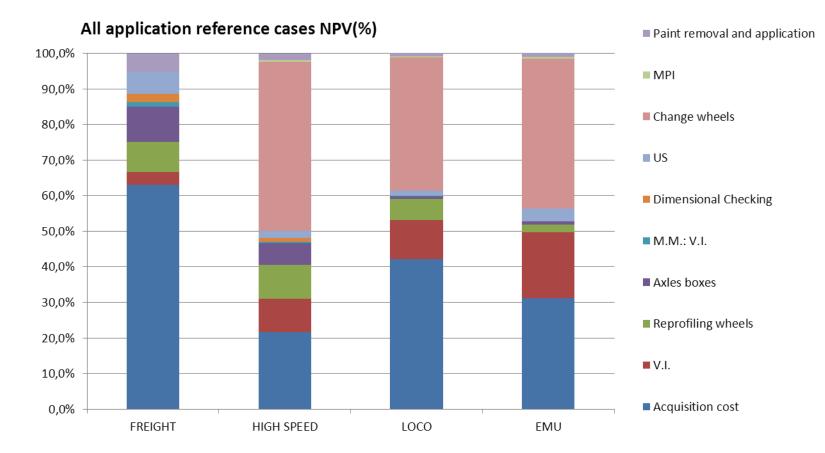
- JSG risk analysis:
 - 57 % due to axle failures (of which 47 % related to hot axle box, 2 % to deformed axles and 8 % to other causes)
 - 32 % due to wheel failures
 - 11 % due to wrong tread profile
- The majority of broken axles is linked to problems with the bearings.

- Objectives
- RAMS/LCC in railways Survey
- RAMS/LCC tool Definition
- Data collection Analysis of axle failures
- Data collection Reference cases
- Innovative coatings
- LCC parametric analysis
- Reliability and cost analysis
- Conclusions

Data collection – Reference cases Data collection

- Preventive and Corrective Maintenance questionnaires distributed
 - Euraxles partners
 - EUAG
- Reliability data of axles is not commonly available within the operators so the study must rely on expert estimations
- Significant scatter of maintenance practices among the different companies and applications showing the lack of harmonization of maintenance rules in Europe
- According to the received data, CM < 5% total LCC
- LCC analysis based only in PM

Data collection – Reference cases Results


	FREIGHT	HIGH SPEED	LOCO	EMU
Mileage/year	30.000 km	300.000 km	150.000 km	175.000 km
Lifetime	40 years	30 years	30 years	30 years
NPV annual	139€	1.766 €	1.106 €	828 €
NPV / 1.000 Km	4,62 €	5,04 €	7,38€	4,73€

Coating	Class 3	Class 3 (2 comp)	Class 3	Class 3
	Automatic	Semiautomatic	Semiautomatic	Semiautomatic
US technique	system - Axle	system bore-	system – Axle	system – Axle
	surface	Hollow axle	end	end

Data collection – Reference cases Results

Data collection – Reference cases Results

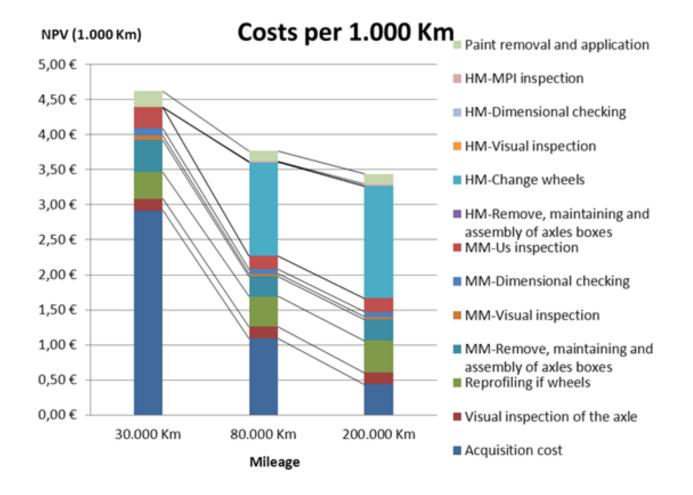
- Highest cost contributions:
 - Wheels substitution
 - Acquisition
 - Axle related operations ≈ 15% 25 % of costs
- Class 3 coatings considered as reference solution in all applications
- Reference US inspection depends on the application
 - Freight: Automatic system on the axle surface
 - High speed: Semi-automatic system from bore (hollow axle)
 - Loco & EMU: Semi-automatic system from axle end

- Objectives
- RAMS/LCC in railways Survey
- RAMS/LCC tool Definition
- Data collection Analysis of axle failures
- Data collection Reference cases
- Innovative coatings
- LCC parametric analysis
- Reliability and cost analysis
- Conclusions

Coatings – Current and innovative solutions Cost and maintenance information - Summary

- Lack of expertise of application of innovative coatings in railway axles
 - New production
 - Maintenance
- Ni/SiC electrodeposition and HVOF high costs
- Costs of ZnAI thermal spraying comparable to conventional coatings
 - Additional top coat for protection against mechanical damages (manipulation, etc.) probably needed. Costs increased
- Further investigations recommended

- Objectives
- RAMS/LCC in railways Survey
- RAMS/LCC tool Definition
- Data collection Analysis of axle failures
- Data collection Reference cases
- Innovative coatings
- LCC parametric analysis
- Reliability and cost analysis
- Conclusions


LCC parametric analysis Motivation and parameters

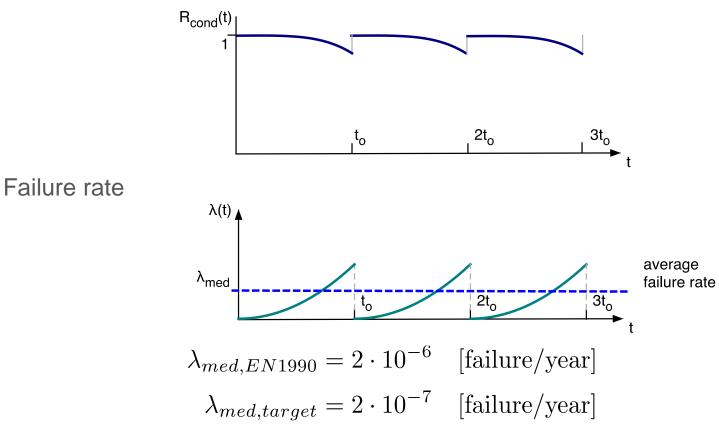
- Parametric analysis to estimate the trends which lead the optimization of LCC for different applications
- Parameters:
 - Km/year
 - Visual inspection [Km]
 - Axle boxes [Km]
 - US inspection [Km]
 - Heavy maintenance [Km]
 - Different US techniques (hollow, axle-end, axle body surface)
 - Coating: Class 3 Vs Class 3 + Class 1
 - Conclusions applicable to innovative coatings

LCC parametric analysis Freight



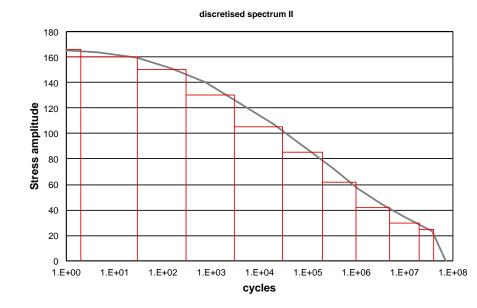
LCC parametric analysis

High speed


- Objectives
- RAMS/LCC in railways Survey
- RAMS/LCC tool Definition
- Data collection Analysis of axle failures
- Data collection Reference cases
- Innovative coatings
- LCC parametric analysis
- Reliability and cost analysis
- Conclusions

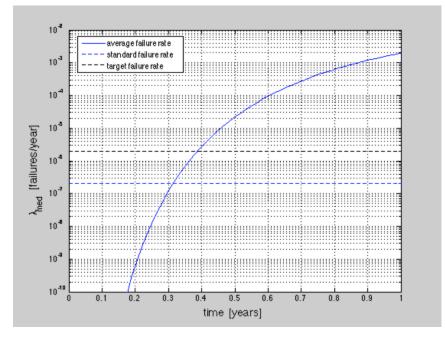
Reliability and cost analysis Introduction

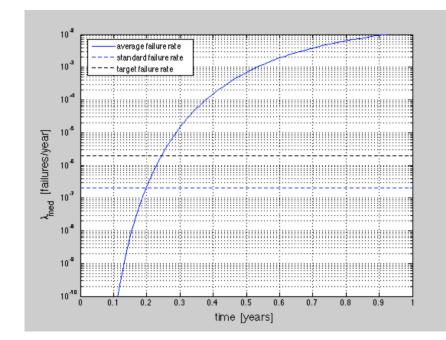
- Maintenance operations to "restore" the condition of the axles
- Conditional reliability


FP7-265706 - EURAXLES Collaborative Project

Reliability and cost analysis Reliability analysis

- Calculation
 - Reliability vs. time for a given spectrum
 - Derivation of reliability for obtaining the failure rate
- Application: High speed (HYPERWHEEL)
- Damages considered in the analysis:
 - Corrosion
- Mileage = 350.000 km/year





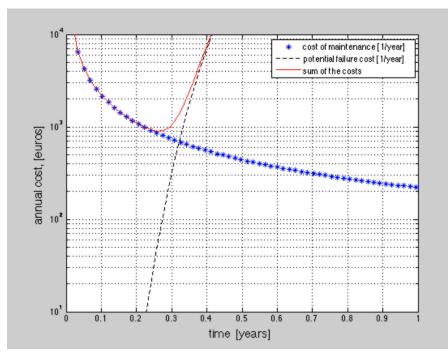
Reliability and cost analysis Reliability analysis - Results

Smax = 210 MPa

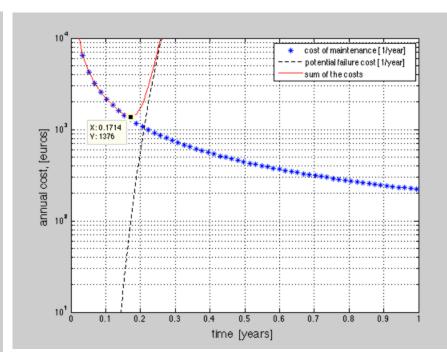
• Standard failure rate: 88,000 km;

Target failure rate: 70,000 km

- Standard failure rate: 140,000 km;
- Target failure rate: 100,000 km


FP7-265706 - EURAXLES Collaborative Project

Reliability and cost analysis Reliability and cost analysis - Results


Smax = 210 MPa

- Intersection point: 110,000 km (≈ periodicity for target failure rate
- Optimum: 85,000 km

FP7-265706 - EURAXLES Collaborative Project

Smax = 230 MPa

- Intersection point: 70,000 km (≈ periodicity for target failure rate
- Optimum: 59,000 km

- Objectives
- RAMS/LCC in railways Survey
- RAMS/LCC tool Definition
- Data collection Analysis of axle failures
- Data collection Reference cases
- Innovative coatings
- LCC parametric analysis
- Reliability and cost analysis
- Conclusions

Conclusions

- Significant scatter of maintenance practices among the different companies showing the lack of harmonization of maintenance rules in Europe.
- LCC distributions of several applications have been calculated. Axle related operations depend on the application.
- Costs of innovative solutions have been estimated. Further investigation recommended for application in railway axles.
- LCC parametric analysis to assess the influence of maintenance operations performed.
- Method for risk analysis linked to cost calculations for determining the optimal inspection intervals proposed.
 - Intervals depend on the maximum stress of the spectrum

Conclusions

- According to the return of experience, the risk to have axle failures in actual railway traffic is very low so the safety is very high .
- Collaboration between different undertakings for further improvement of the reliability and maintenance of axles.

Thank you for your attention

FP7-265706 – EURAXLES Collaborative Project